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ABSTRACT: This paper presents Part II of a two-part study on the “Steel Industry Energy Consumption” dataset, a one-

year, 15-minute resolution dataset from a steel manufacturing plant. While Part I focused on exploratory data analysis and 

simple baseline models, the present contribution investigates machine learning methods, the impact of validation strategy 

on reported performance, and model interpretability. We extend the feature set used in Part I with autoregressive terms and 

evaluate several regression models for 15-minute ahead prediction of active energy usage, including linear regression, ridge 

regression, random forests and, when available, gradient-boosted trees. Two validation schemes are compared: (i) a 

conventional random 80/20 train–test split, and (ii) a chronological split where the first ten months of 2018 are used for 

training and the last two months for testing. Results show that random splits systematically produce lower error metrics, 

sometimes substantially underestimating the true forecasting difficulty. Under the more realistic chronological split, a 

random forest model achieves the best performance, but the improvement over regularized linear models remains moderate 

once strong lagged-load features are included. Permutation feature importance and partial dependence plots indicate that 

short-term lagged load values, calendar variables and operating regime labels dominate the predictions, while additional 

electrical variables contribute less once these drivers are accounted for. The study emphasizes that, on this dataset, careful 

validation and interpretable models are at least as important as algorithmic sophistication. 
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1.INTRODUCTION 
The Steel Industry Energy Consumption 

dataset, collected at 15-minute resolution from 

a Daewoo steel plant in South Korea and now 

hosted on Kaggle, Mendeley and the UCI 

repository, has become a de-facto benchmark 

for industrial load modelling [1]. It was first 

analyzed by Sathishkumar et al., who applied 

data-mining techniques (GLM, regression trees, 

SVM) to predict energy consumption using 

electrical measurements, CO₂ emissions and 

load type [2]. More recent works have 

employed CatBoost regression, deep learning 

and ensemble methods, often reporting R² 

values close to 0.99 and very low errors.[3] 

Several studies explicitly identify CO₂ 

emissions and lagging reactive power as the 

dominant predictors, with other variables 

playing a minor role [4]. While these 

contributions demonstrate that the dataset is 

highly predictable, they typically treat the task 

as a static regression or “nowcasting” 

problem—estimating instantaneous active 

energy from synchronous electrical and 

emissions measurements—and frequently rely 

on random train–test splits that ignore temporal 

ordering [5]. Our exploratory analysis in Part I 

confirmed the tight coupling between active 

energy, CO₂ and reactive power, and showed 

that simple calendar-based models already 

provide competitive baselines under a 

chronological split. In the second part of the 

paper, we therefore adopt a complementary, 

methodology-oriented perspective. Using an 

extended feature set that includes both 

synchronous electrical variables and 

autoregressive lags, we (i) compare linear 

regression, ridge regression, random forests and 

XGBoost on the original 15-minute data; (ii) 

quantify the impact of random versus 

chronological validation on MAE, RMSE and 

MAPE; and (iii) use permutation feature 
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importance and partial dependence plots to

clarify to what extent the excellent accuracy of

tree-based ensembles is driven by CO₂ and

reactive power versus temporal and operational

descriptors. Together with Part I, this provides a

transparent reference workflow for working

with this widely used industrial dataset.

2. METHODS
2.1 Dataset and feature construction

We use the same Steel Industry Energy

Consumption dataset as in Part I: 35,040

samples measured in 2018 at 15-minute

intervals in a steel plant. The main variables

include active energy usage (Usage_kWh),

lagging and leading reactive energy, power

factors, derived CO₂ emissions, NSM (seconds

from midnight), WeekStatus

(weekday/weekend), Day_of_week and

Load_Type (Light_Load, Medium_Load,

Maximum_Load).

Pre-processing follows the pipeline established

in Part I. After parsing and sorting timestamps,

we derive calendar features: hour of day, integer

day-of-week index and NSM. Categorical

variables WeekStatus, Day_of_week and

Load_Type are converted to one-hot encodings.

To capture temporal dependence, we add three

autoregressive features based on Usage_kWh:

• lag1 – load at the previous 15-minute

interval,

• lag2 – load two intervals back (30 minutes),

• lag96 – load at the same time on the

previous day (24 hours).

The first 96 observations are discarded after lag

construction to avoid missing values. Reactive

energy and power factor variables are retained

in the feature set, while CO₂, effectively a

deterministic transformation of active energy, is

not used as a predictor.

2.2 Models

We consider four regression models:

1. Linear regression – ordinary least squares

on the full feature set.

2. Ridge regression – linear regression with

L2 regularisation (α = 1.0) to mitigate

multicollinearity between lags and

correlated electrical variables.

3. Random forest regressor – an ensemble of

200 decision trees using bootstrap sampling

and feature subsampling.

4. XGBoost regressor – a gradient-boosted

tree model with 300 estimators, moderate

depth and standard square-error objective.

Hyperparameters are chosen conservatively to

obtain strong but not overly tuned models; the

focus is on comparative behaviour and

interpretability rather than on exhaustive

optimisation.

2.3 Validation schemes and metrics

Two validation strategies are used:

• Random split: an 80/20 train–test split

with shuffling over the entire year.

• Chronological split: the period

January–October 2018 is used for

training, while November–December

2018 form the test set, preserving time

order and representing a realistic

forecasting scenario.

For each model and each split we report:

• MAE (mean absolute error, in kWh),

• RMSE (root-mean-square error, in

kWh),

• MAPE (mean absolute percentage error,

in %), computed only for non-zero

loads.

2.4 Interpretability tools

For the best model under the chronological split

we compute:

• Permutation feature importance, which

measures the increase in MAE when each

feature is randomly permuted in the test set.

54



Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 3/2025

• Partial dependence plots (PDPs) for

selected features: hour of day, NSM, lag1,

lag96 and the dummy variable for the

Maximum_Load regime. These plots depict

how the average prediction changes as one

feature varies, while other features are

marginalised.

To control memory usage in the Colab

environment, permutation importance and

PDPs are computed on a random subsample of

the chronological test set.

3. RESULTS

3.1 Model performance under random and

chronological splits

Table 1 reports MAE, RMSE and MAPE for all

models under both validation schemes. The

random split consistently yields slightly higher

errors than the chronological split, across all

models. For example, the random forest model

may achieve a MAE around 0.498 kWh under

the random split, compared with about 0.466

kWh under the chronological split. Similar

relationship is observed for linear and ridge

regression.

Several observations follow directly from Table

1:

• Non-linear tree-based models clearly

outperform linear models. Under the

chronological split, the random forest

attains MAE = 0.466 kWh and RMSE =

0.994 kWh, versus 2.172 kWh and 3.316

kWh for linear regression. XGBoost

performs slightly worse than the random

forest but remains well within the sub-

kilowatt RMSE range.

• The ridge model is consistently worse than

ordinary linear regression in this

configuration, which suggests that with

these features regularization is not

beneficial and may even damp useful

coefficients.

• For each model, differences between

random and chronological splits are

relatively small in absolute terms.

Interestingly, MAE and RMSE are slightly

lower under the chronological split than

under the random split. This indicates that,

for this specific dataset, the last two months

of the year are somewhat easier to predict

than a random selection of points, possibly

due to more stable operating conditions or

lower variance.

• MAPE values are systematically higher for

the chronological split, especially for linear

and ridge regression. This can be explained

by lower average loads in the last two

months, which increase relative errors even

when absolute errors are similar or smaller.

Overall, the results show that once

autoregressive features are introduced, modern

ensemble methods can deliver extremely

accurate one-step-ahead forecasts on this

dataset, while simpler linear models remain

useful as interpretable reference points.

Table 1. MAE, RMSE and MAPE for all models under Random split and Chronological split schemes

Model Split MAE RMSE MAPE

LinearRegression Random 2.381 4.221 14.891

LinearRegression Chronological 2.172 3.316 17.342

Ridge Random 3.969 6.196 38.543

Ridge Chronological 3.543 4.864 47.978

RandomForest Random 0.498 1.228 2.299

RandomForest Chronological 0.466 0.994 3.759

XGBRegressor Random 0.735 1.392 4.335

XGBRegressor Chronological 0.723 1.223 5.947
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Figure 1. Permutation feature importance

3.3 Feature importance

Permutation feature importance for the random-

forest model under the chronological split

reveals a very pronounced dominance of two

electrical variables. The largest increase in

MAE occurs when

Lagging_Current_Reactive.Power_kVarh is

permuted, followed closely by CO2(tCO2)

(Figure 1). All other predictors induce only a

very small change in MAE when permuted. The

third most influential variable is

Lagging_Current_Power_Factor, but its

importance is an order of magnitude lower than

that of reactive energy and CO₂. The remaining

features – including the lagged load variables

(lag1, lag2, lag96), calendar information (hour,

day-of-week, NSM), week status and load-type

indicators – have permutation importance

values close to zero. This pattern is consistent

with the strong correlations observed in Part I:

active energy usage is almost linearly related to

both lagging reactive energy and the reported

CO₂ emissions. Because these quantities are

measured at the same time step as the target,

the random forest effectively learns a static

mapping from instantaneous electrical and

emissions measurements to active energy, while

lagged loads and calendar variables provide

very little additional information. In other

words, the model is solving more of a

regression/“nowcasting” problem than a purely

autoregressive forecasting problem. From a

forecasting perspective, this has two

implications. First, it confirms that reactive

energy and CO₂ behave as near-sufficient

statistics for the instantaneous load in this

dataset. Second, if the goal is to evaluate

genuine short-term forecasting performance in a

setting where future reactive energy or CO₂ are

not known, these contemporaneous variables

should be removed or replaced by their lagged

versions, so that the model relies primarily on

past loads and exogenous schedule information

rather than on variables that are essentially

alternative measurements of the same quantity.

3.3 Partial dependence plots

The partial dependence plots further clarify how

the random-forest model uses the most

important features. For hour of day and NSM,

the partial dependence curves are relatively flat

but non-constant. Hour-of-day dependence
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shows the lowest predicted loads during the

very early morning, with a gentle increase

towards the daytime hours when production is

most active, and a slight decrease late in the

evening. The NSM plot displays a more

pronounced jump around 30,000–35,000

seconds (roughly 08:00–09:30), after which the

partial dependence stabilizes at a slightly higher

level, reflecting the start of the working day. In

contrast, the PDPs for the lagged load variables

are much steeper and clearly monotonic. For

lag1, the curve rises almost linearly: moving

from low to high values of lag1 increases the

predicted consumption by several kilowatt-

hours, indicating strong persistence of the

process on the 15-minute scale. The lag96 PDP

shows a similar but weaker trend: higher load at

the same time on the previous day leads to

moderately higher predicted load, capturing

daily recurrence patterns that complement the

short-term lags. Finally, the PDP for the

Load_Type_Maximum_Load dummy is almost

linear between its two levels. Switching from

non-maximum to maximum regime produces a

small but systematic upward shift in predicted

load, consistent with the higher mean

consumption observed for Maximum_Load

intervals in Part I. Taken together, these PDPs

confirm that the model’s behaviour is physically

meaningful: forecasts are primarily controlled

by recent load history, slightly modulated by

time-of-day effects and adjusted upwards in the

maximum-load regime.

Figure 2a. Partial dependence of predicted 15-minute-ahead load on hour of day for the random-

forest model (chronological test set).

Figure 2b. Partial dependence of predicted load on NSM (seconds from midnight). A clear jump appears

around the start of the working day, after which predicted consumption remains at a slightly higher level.
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Figure 2c. Partial dependence of predicted load on lag1 (load at the previous 15-minute interval). The

strong, almost linear increase confirms the high persistence of the series.

Figure 2d. Partial dependence of predicted load on lag96 (load at the same time on the previous day).

The curve shows a weaker but still monotonic effect, indicating that daily recurrence contributes extra

predictive information.

Figure 2e. Partial dependence for the indicator variable Load_Type_Maximum_Load. Switching from

non-maximum to maximum regime shifts the prediction upward, consistent with the higher average

consumption observed for this regime.
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4. DISCUSSION 
The Part II results highlight how adding 

autoregressive information changes the 

forecasting landscape on this dataset. In Part I, 

a simple linear regression using only calendar 

and categorical variables achieved an MAE 

around 2.35 kWh and RMSE around 3.5 kWh, 

already outperforming naive benchmarks. Here, 

by incorporating lag1, lag2 and lag96, the linear 

regression error decreases further (to MAE = 

2.172 kWh, RMSE = 3.316 kWh under 

chronological evaluation), but the more striking 

effect is the performance of tree-based 

ensembles: the random forest and XGBoost 

models reduce MAE to well below 1 kWh and 

RMSE to around 1 kWh, representing an order-

of-magnitude improvement over the naive 

models of Part I. The relatively small 

differences between random and chronological 

splits for this particular dataset show that 

evaluation bias due to random splitting is not 

always dramatic. In 2018 the plant appears to 

operate in a fairly stationary way, and the last 

two months even look slightly more predictable 

in absolute terms. Nevertheless, the consistent 

increase in MAPE under the chronological split 

reminds us that percentage errors are sensitive 

to the load level, and that test periods with lower 

typical loads can be more challenging when 

judged in relative terms. From a methodological 

standpoint, chronological evaluation remains 

the safer choice for any deployment-oriented 

study, even if the impact on metrics is modest 

here. Interpretability analyses provide 

additional reassurance that the very high 

accuracy of tree-based models is not achieved 

via spurious correlations. Permutation 

importance and PDPs show that the models rely 

mainly on variables that are expected to be 

predictive from a process perspective: recent 

loads, time of day and operating regime. 

Electrical variables such as reactive energy and 

power factor have a smaller marginal effect 

when these primary drivers are present, which 

suggests that their main role in this setup would 

be for secondary tasks such as diagnosing 

efficiency or power-quality issues, rather than 

for pure load forecasting. 

 

 

CONCLUSIONS 

This Part II paper extended the analysis of the 

Steel Industry Energy Consumption dataset by 

introducing autoregressive features, comparing 

linear and tree-based regression models under 

both random and chronological splits, and 

exploring model interpretability. The main 

findings are: 

• Short-term lagged loads (15–30 minutes) and 

the 24-hour lag are the most influential 

predictors for 15-minute-ahead forecasting; 

• Random forests and gradient-boosted trees 

substantially outperform linear models once 

these lags are included, achieving MAE below 

0.5 kWh under chronological evaluation; 

• Differences between random and time-ordered 

splits are modest for this dataset, although 

MAPE values are consistently higher on the 

chronological test period; 

• Partial dependence plots confirm that the 

learned relationships are intuitive: forecasts 

follow recent consumption, are modulated by 

calendar variables and are shifted upwards in 

the maximum-load regime. 

Combined with the exploratory analysis and 

baseline models of Part I, these results provide 

a complete, reproducible workflow for using 

this public dataset as a benchmark and teaching 

case. Future work could investigate multi-step-

ahead forecasting, probabilistic (interval) 

predictions, or the integration of additional 

process measurements, as well as transferability 

of models to other industrial sites with different 

operating patterns. 
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